ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.11162
12
24

In-the-wild Drowsiness Detection from Facial Expressions

21 October 2020
Ajjen Joshi
Survi Kyal
Sandipan Banerjee
Taniya Mishra
    CVBM
ArXivPDFHTML
Abstract

Driving in a state of drowsiness is a major cause of road accidents, resulting in tremendous damage to life and property. Developing robust, automatic, real-time systems that can infer drowsiness states of drivers has the potential of making life-saving impact. However, developing drowsiness detection systems that work well in real-world scenarios is challenging because of the difficulties associated with collecting high-volume realistic drowsy data and modeling the complex temporal dynamics of evolving drowsy states. In this paper, we propose a data collection protocol that involves outfitting vehicles of overnight shift workers with camera kits that record their faces while driving. We develop a drowsiness annotation guideline to enable humans to label the collected videos into 4 levels of drowsiness: `alert', `slightly drowsy', `moderately drowsy' and `extremely drowsy'. We experiment with different convolutional and temporal neural network architectures to predict drowsiness states from pose, expression and emotion-based representation of the input video of the driver's face. Our best performing model achieves a macro ROC-AUC of 0.78, compared to 0.72 for a baseline model.

View on arXiv
Comments on this paper