ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.11539
17
11

Cross Copy Network for Dialogue Generation

22 October 2020
Changzhen Ji
Xiaoxia Zhou
Yating Zhang
Xiaozhong Liu
Changlong Sun
Conghui Zhu
T. Zhao
ArXivPDFHTML
Abstract

In the past few years, audiences from different fields witness the achievements of sequence-to-sequence models (e.g., LSTM+attention, Pointer Generator Networks, and Transformer) to enhance dialogue content generation. While content fluency and accuracy often serve as the major indicators for model training, dialogue logics, carrying critical information for some particular domains, are often ignored. Take customer service and court debate dialogue as examples, compatible logics can be observed across different dialogue instances, and this information can provide vital evidence for utterance generation. In this paper, we propose a novel network architecture - Cross Copy Networks(CCN) to explore the current dialog context and similar dialogue instances' logical structure simultaneously. Experiments with two tasks, court debate and customer service content generation, proved that the proposed algorithm is superior to existing state-of-art content generation models.

View on arXiv
Comments on this paper