ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.11925
37
2
v1v2v3 (latest)

The Polynomial Method is Universal for Distribution-Free Correlational SQ Learning

22 October 2020
Aravind Gollakota
Sushrut Karmalkar
Adam R. Klivans
ArXiv (abs)PDFHTML
Abstract

We consider the problem of distribution-free learning for Boolean function classes in the PAC and agnostic models. Generalizing a recent beautiful work of Malach and Shalev-Shwartz (2020) who gave the first tight correlational SQ (CSQ) lower bounds for learning DNF formulas, we show that lower bounds on the threshold or approximate degree of any function class directly imply CSQ lower bounds for PAC or agnostic learning respectively. These match corresponding positive results using upper bounds on the threshold or approximate degree in the SQ model for PAC or agnostic learning. Many of these results were implicit in earlier works of Feldman and Sherstov.

View on arXiv
Comments on this paper