ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.11971
25
110

Noise2Same: Optimizing A Self-Supervised Bound for Image Denoising

22 October 2020
Yaochen Xie
Zhengyang Wang
Shuiwang Ji
ArXivPDFHTML
Abstract

Self-supervised frameworks that learn denoising models with merely individual noisy images have shown strong capability and promising performance in various image denoising tasks. Existing self-supervised denoising frameworks are mostly built upon the same theoretical foundation, where the denoising models are required to be J-invariant. However, our analyses indicate that the current theory and the J-invariance may lead to denoising models with reduced performance. In this work, we introduce Noise2Same, a novel self-supervised denoising framework. In Noise2Same, a new self-supervised loss is proposed by deriving a self-supervised upper bound of the typical supervised loss. In particular, Noise2Same requires neither J-invariance nor extra information about the noise model and can be used in a wider range of denoising applications. We analyze our proposed Noise2Same both theoretically and experimentally. The experimental results show that our Noise2Same remarkably outperforms previous self-supervised denoising methods in terms of denoising performance and training efficiency. Our code is available at https://github.com/divelab/Noise2Same.

View on arXiv
Comments on this paper