ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.12138
15
273

Rethinking the competition between detection and ReID in Multi-Object Tracking

23 October 2020
Chao Liang
Zhipeng Zhang
Xue Zhou
Bing Li
Xiyong Ye
Jianxiao Zou
    VOT
ArXivPDFHTML
Abstract

Due to balanced accuracy and speed, one-shot models which jointly learn detection and identification embeddings, have drawn great attention in multi-object tracking (MOT). However, the inherent differences and relations between detection and re-identification (ReID) are unconsciously overlooked because of treating them as two isolated tasks in the one-shot tracking paradigm. This leads to inferior performance compared with existing two-stage methods. In this paper, we first dissect the reasoning process for these two tasks, which reveals that the competition between them inevitably would destroy task-dependent representations learning. To tackle this problem, we propose a novel reciprocal network (REN) with a self-relation and cross-relation design so that to impel each branch to better learn task-dependent representations. The proposed model aims to alleviate the deleterious tasks competition, meanwhile improve the cooperation between detection and ReID. Furthermore, we introduce a scale-aware attention network (SAAN) that prevents semantic level misalignment to improve the association capability of ID embeddings. By integrating the two delicately designed networks into a one-shot online MOT system, we construct a strong MOT tracker, namely CSTrack. Our tracker achieves the state-of-the-art performance on MOT16, MOT17 and MOT20 datasets, without other bells and whistles. Moreover, CSTrack is efficient and runs at 16.4 FPS on a single modern GPU, and its lightweight version even runs at 34.6 FPS. The complete code has been released at https://github.com/JudasDie/SOTS.

View on arXiv
Comments on this paper