ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.12139
11
2

GSEP: A robust vocal and accompaniment separation system using gated CBHG module and loudness normalization

23 October 2020
S. Park
Ben Sangbae Chon
ArXivPDFHTML
Abstract

In the field of audio signal processing research, source separation has been a popular research topic for a long time and the recent adoption of the deep neural networks have shown a significant improvement in performance. The improvement vitalizes the industry to productize audio deep learning based products and services including Karaoke in the music streaming apps and dialogue enhancement in the UHDTV. For these early markets, we defined a set of design principles of the vocal and accompaniment separation model in terms of robustness, quality, and cost. In this paper, we introduce GSEP (Gaudio source SEParation system), a robust vocal and accompaniment separation system using a Gated- CBHG module, mask warping, and loudness normalization and it was verified that the proposed system satisfies all three principles and outperforms the state-of-the-art systems both in objective measure and subjective assessment through experiments.

View on arXiv
Comments on this paper