139

S2cGAN: Semi-Supervised Training of Conditional GANs with Fewer Labels

Abstract

Generative adversarial networks (GANs) have been remarkably successful in learning complex high dimensional real word distributions and generating realistic samples. However, they provide limited control over the generation process. Conditional GANs (cGANs) provide a mechanism to control the generation process by conditioning the output on a user defined input. Although training GANs requires only unsupervised data, training cGANs requires labelled data which can be very expensive to obtain. We propose a framework for semi-supervised training of cGANs which utilizes sparse labels to learn the conditional mapping, and at the same time leverages a large amount of unsupervised data to learn the unconditional distribution. We demonstrate effectiveness of our method on multiple datasets and different conditional tasks.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.