ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.12784
370
10
v1v2 (latest)

Clustering Contextualized Representations of Text for Unsupervised Syntax Induction

AAAI Conference on Artificial Intelligence (AAAI), 2020
24 October 2020
Vikram Gupta
Haoyue Shi
Kevin Gimpel
Mrinmaya Sachan
ArXiv (abs)PDFHTML
Abstract

We explore clustering of contextualized text representations for two unsupervised syntax induction tasks: part of speech induction (POSI) and constituency labelling (CoLab). We propose a deep embedded clustering approach which jointly transforms these representations into a lower dimension cluster friendly space and clusters them. We further enhance these representations by augmenting them with task-specific representations. We also explore the effectiveness of multilingual representations for different tasks and languages. With this work, we establish the first strong baselines for unsupervised syntax induction using contextualized text representations. We report competitive performance on 45-tag POSI, state-of-the-art performance on 12-tag POSI across 10 languages, and competitive results on CoLab.

View on arXiv
Comments on this paper