ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.13152
6
5

A Simple Spectral Failure Mode for Graph Convolutional Networks

25 October 2020
Carey E. Priebe
Cencheng Shen
Ningyuan Huang
Tianyi Chen
    GNN
ArXivPDFHTML
Abstract

Neural networks have achieved remarkable successes in machine learning tasks. This has recently been extended to graph learning using neural networks. However, there is limited theoretical work in understanding how and when they perform well, especially relative to established statistical learning techniques such as spectral embedding. In this short paper, we present a simple generative model where unsupervised graph convolutional network fails, while the adjacency spectral embedding succeeds. Specifically, unsupervised graph convolutional network is unable to look beyond the first eigenvector in certain approximately regular graphs, thus missing inference signals in non-leading eigenvectors. The phenomenon is demonstrated by visual illustrations and comprehensive simulations.

View on arXiv
Comments on this paper