ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.13313
135
10
v1v2 (latest)

A Dark and Bright Channel Prior Guided Deep Network for Retinal Image Quality Assessment

Chinese Conference on Pattern Recognition and Computer Vision (CPRCV), 2020
26 October 2020
Ziwen Xu
Beiji Zou
Qing Liu
ArXiv (abs)PDFHTML
Abstract

Retinal image quality assessment is an essential task in the diagnosis of retinal diseases. Recently, there are emerging deep models to grade quality of retinal images. Current state-of-the-arts either directly transfer classification networks originally designed for natural images to quality classification of retinal image or introduce extra image quality priors via multiple CNN branches or independent CNNs. This paper proposes a dark and bright prior guided deep network for retinal image quality assessment called GuidedNet. Specifically, the dark and bright channel priors are embedded into the start layer of network to improve the discriminate ability of deep features. Experimental results on retinal image quality dataset Eye-Quality demonstrate the effectiveness of the proposed GuidedNet.

View on arXiv
Comments on this paper