ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.14061
11
5

Jointly Optimizing State Operation Prediction and Value Generation for Dialogue State Tracking

24 October 2020
Yan Zeng
J. Nie
    OffRL
ArXivPDFHTML
Abstract

We investigate the problem of multi-domain Dialogue State Tracking (DST) with open vocabulary. Existing approaches exploit BERT encoder and copy-based RNN decoder, where the encoder predicts the state operation, and the decoder generates new slot values. However, in such a stacked encoder-decoder structure, the operation prediction objective only affects the BERT encoder and the value generation objective mainly affects the RNN decoder. In this paper, we propose a purely Transformer-based framework, where a single BERT works as both the encoder and the decoder. In so doing, the operation prediction objective and the value generation objective can jointly optimize this BERT for DST. At the decoding step, we re-use the hidden states of the encoder in the self-attention mechanism of the corresponding decoder layers to construct a flat encoder-decoder architecture for effective parameter updating. Experimental results show that our approach substantially outperforms the existing state-of-the-art framework, and it also achieves very competitive performance to the best ontology-based approaches.

View on arXiv
Comments on this paper