ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.15792
17
2

A Framework for Learning Predator-prey Agents from Simulation to Real World

29 October 2020
Jiunhan Chen
Zhenyu Gao
ArXivPDFHTML
Abstract

In this paper, we propose an evolutionary predatorprey robot system which can be generally implemented from simulation to the real world. We design the closed-loop robot system with camera and infrared sensors as inputs of controller. Both the predators and prey are co-evolved by NeuroEvolution of Augmenting Topologies (NEAT) to learn the expected behaviours. We design a framework that integrate Gym of OpenAI, Robot Operating System (ROS), Gazebo. In such a framework, users only need to focus on algorithms without being worried about the detail of manipulating robots in both simulation and the real world. Combining simulations, real-world evolution, and robustness analysis, it can be applied to develop the solutions for the predator-prey tasks. For the convenience of users, the source code and videos of the simulated and real world are published on Github.

View on arXiv
Comments on this paper