ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.16030
11
44

Multimodal Metric Learning for Tag-based Music Retrieval

30 October 2020
Minz Won
Sergio Oramas
Oriol Nieto
F. Gouyon
Xavier Serra
ArXivPDFHTML
Abstract

Tag-based music retrieval is crucial to browse large-scale music libraries efficiently. Hence, automatic music tagging has been actively explored, mostly as a classification task, which has an inherent limitation: a fixed vocabulary. On the other hand, metric learning enables flexible vocabularies by using pretrained word embeddings as side information. Also, metric learning has already proven its suitability for cross-modal retrieval tasks in other domains (e.g., text-to-image) by jointly learning a multimodal embedding space. In this paper, we investigate three ideas to successfully introduce multimodal metric learning for tag-based music retrieval: elaborate triplet sampling, acoustic and cultural music information, and domain-specific word embeddings. Our experimental results show that the proposed ideas enhance the retrieval system quantitatively, and qualitatively. Furthermore, we release the MSD500, a subset of the Million Song Dataset (MSD) containing 500 cleaned tags, 7 manually annotated tag categories, and user taste profiles.

View on arXiv
Comments on this paper