ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.00101
14
35

EEG-Based Brain-Computer Interfaces Are Vulnerable to Backdoor Attacks

30 October 2020
Lubin Meng
Jian Huang
Zhigang Zeng
Xue Jiang
Shan Yu
T. Jung
Chin-Teng Lin
Ricardo Chavarriaga
Dongrui Wu
    AAML
ArXivPDFHTML
Abstract

Research and development of electroencephalogram (EEG) based brain-computer interfaces (BCIs) have advanced rapidly, partly due to deeper understanding of the brain and wide adoption of sophisticated machine learning approaches for decoding the EEG signals. However, recent studies have shown that machine learning algorithms are vulnerable to adversarial attacks. This article proposes to use narrow period pulse for poisoning attack of EEG-based BCIs, which is implementable in practice and has never been considered before. One can create dangerous backdoors in the machine learning model by injecting poisoning samples into the training set. Test samples with the backdoor key will then be classified into the target class specified by the attacker. What most distinguishes our approach from previous ones is that the backdoor key does not need to be synchronized with the EEG trials, making it very easy to implement. The effectiveness and robustness of the backdoor attack approach is demonstrated, highlighting a critical security concern for EEG-based BCIs and calling for urgent attention to address it.

View on arXiv
Comments on this paper