ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.00577
42
0
v1v2v3 (latest)

FusiformNet: Extracting Discriminative Facial Features on Different Levels

1 November 2020
Kyo Takano
    CVBM
ArXiv (abs)PDFHTML
Abstract

Over the last several years, research on facial recognition based on Deep Neural Network has evolved with approaches like task-specific loss functions, image normalization and augmentation, network architectures, etc. However, there have been few approaches with attention to how human faces differ from person to person. Premising that inter-personal differences are found both generally and locally on the human face, I propose FusiformNet, a novel framework for feature extraction that leverages the nature of discriminative facial features. Tested on Image-Unrestricted setting of Labeled Face in the Wild benchmark, this method achieved a state-of-the-art accuracy of 96.67% without labeled outside data, image augmentation, normalization, or special loss functions. Likewise, the method also performed on par with previous state-of-the-arts when pre-trained on CASIA-WebFace dataset. Considering its ability to extract both general and local facial features, the utility of FusiformNet may not be limited to facial recognition but also extend to other DNN-based tasks.

View on arXiv
Comments on this paper