ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.00718
39
3

Fundamental Limits of Obfuscation for Linear Gaussian Dynamical Systems: An Information-Theoretic Approach

29 October 2020
Song Fang
Quanyan Zhu
ArXiv (abs)PDFHTML
Abstract

In this paper, we study the fundamental limits of obfuscation in terms of privacy-distortion tradeoffs for linear Gaussian dynamical systems via an information-theoretic approach. Particularly, we obtain analytical formulas that capture the fundamental privacy-distortion tradeoffs when privacy masks are to be added to the outputs of the dynamical systems, while indicating explicitly how to design the privacy masks in an optimal way: The privacy masks should be colored Gaussian with power spectra shaped specifically based upon the system and noise properties.

View on arXiv
Comments on this paper