ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.00975
8
1

DNN-Based Semantic Model for Rescoring N-best Speech Recognition List

2 November 2020
Dominique Fohr
Irina Illina
    KELM
ArXivPDFHTML
Abstract

The word error rate (WER) of an automatic speech recognition (ASR) system increases when a mismatch occurs between the training and the testing conditions due to the noise, etc. In this case, the acoustic information can be less reliable. This work aims to improve ASR by modeling long-term semantic relations to compensate for distorted acoustic features. We propose to perform this through rescoring of the ASR N-best hypotheses list. To achieve this, we train a deep neural network (DNN). Our DNN rescoring model is aimed at selecting hypotheses that have better semantic consistency and therefore lower WER. We investigate two types of representations as part of input features to our DNN model: static word embeddings (from word2vec) and dynamic contextual embeddings (from BERT). Acoustic and linguistic features are also included. We perform experiments on the publicly available dataset TED-LIUM mixed with real noise. The proposed rescoring approaches give significant improvement of the WER over the ASR system without rescoring models in two noisy conditions and with n-gram and RNNLM.

View on arXiv
Comments on this paper