ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.01307
20
17

The Mathematical Foundations of Manifold Learning

30 October 2020
Luke Melas-Kyriazi
    AI4CE
ArXivPDFHTML
Abstract

Manifold learning is a popular and quickly-growing subfield of machine learning based on the assumption that one's observed data lie on a low-dimensional manifold embedded in a higher-dimensional space. This thesis presents a mathematical perspective on manifold learning, delving into the intersection of kernel learning, spectral graph theory, and differential geometry. Emphasis is placed on the remarkable interplay between graphs and manifolds, which forms the foundation for the widely-used technique of manifold regularization. This work is written to be accessible to a broad mathematical audience, including machine learning researchers and practitioners interested in understanding the theorems underlying popular manifold learning algorithms and dimensionality reduction techniques.

View on arXiv
Comments on this paper