ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.01353
14
4

Recyclable Waste Identification Using CNN Image Recognition and Gaussian Clustering

2 November 2020
Yuheng Wang
W. Zhao
Jiahui Xu
Raymond Hong
ArXivPDFHTML
Abstract

Waste recycling is an important way of saving energy and materials in the production process. In general cases recyclable objects are mixed with unrecyclable objects, which raises a need for identification and classification. This paper proposes a convolutional neural network (CNN) model to complete both tasks. The model uses transfer learning from a pretrained Resnet-50 CNN to complete feature extraction. A subsequent fully connected layer for classification was trained on the augmented TrashNet dataset [1]. In the application, sliding-window is used for image segmentation in the pre-classification stage. In the post-classification stage, the labelled sample points are integrated with Gaussian Clustering to locate the object. The resulting model has achieved an overall detection rate of 48.4% in simulation and final classification accuracy of 92.4%.

View on arXiv
Comments on this paper