ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.02379
73
7
v1v2 (latest)

Asynchrony and Acceleration in Gossip Algorithms

4 November 2020
Mathieu Even
Hadrien Hendrikx
Laurent Massoulié
ArXiv (abs)PDFHTML
Abstract

This paper considers the minimization of a sum of smooth and strongly convex functions dispatched over the nodes of a communication network. Previous works on the subject either focus on synchronous algorithms, which can be heavily slowed down by a few slow nodes (the \emph{straggler problem}), or consider a historical asynchronous setting (Boyd et al., 2006), which relies on a communication model that cannot be readily implemented in practice, as it does not capture important aspects of asynchronous communications such as non-instantaneous computations and communications. We have two main contributions. 1) We introduce a new communication scheme, based on \emph{Loss-Networks}, that is programmable in a fully asynchronous and decentralized fashion. We establish empirically and theoretically that it improves over existing synchronous algorithms by depending on local communication delays in the analysis instead of global worst-ones. 2) We provide an acceleration of the standard gossip algorithm in the historical asynchronous model without requiring any additional synchronization.

View on arXiv
Comments on this paper