ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.02904
15
25

Hyperrealistic Image Inpainting with Hypergraphs

5 November 2020
Gourav Wadhwa
Abhinav Dhall
Subrahmanyam Murala
Usman Tariq
    GNN
ArXivPDFHTML
Abstract

Image inpainting is a non-trivial task in computer vision due to multiple possibilities for filling the missing data, which may be dependent on the global information of the image. Most of the existing approaches use the attention mechanism to learn the global context of the image. This attention mechanism produces semantically plausible but blurry results because of incapability to capture the global context. In this paper, we introduce hypergraph convolution on spatial features to learn the complex relationship among the data. We introduce a trainable mechanism to connect nodes using hyperedges for hypergraph convolution. To the best of our knowledge, hypergraph convolution have never been used on spatial features for any image-to-image tasks in computer vision. Further, we introduce gated convolution in the discriminator to enforce local consistency in the predicted image. The experiments on Places2, CelebA-HQ, Paris Street View, and Facades datasets, show that our approach achieves state-of-the-art results.

View on arXiv
Comments on this paper