ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.05570
17
10

Challenges of Applying Deep Reinforcement Learning in Dynamic Dispatching

9 November 2020
H. Khorasgani
Haiyan Wang
Chetan Gupta
    OffRL
    OnRL
ArXivPDFHTML
Abstract

Dynamic dispatching aims to smartly allocate the right resources to the right place at the right time. Dynamic dispatching is one of the core problems for operations optimization in the mining industry. Theoretically, deep reinforcement learning (RL) should be a natural fit to solve this problem. However, the industry relies on heuristics or even human intuitions, which are often short-sighted and sub-optimal solutions. In this paper, we review the main challenges in using deep RL to address the dynamic dispatching problem in the mining industry.

View on arXiv
Comments on this paper