ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.06056
13
3

Text Augmentation for Language Models in High Error Recognition Scenario

11 November 2020
Karel Beneš
L. Burget
ArXivPDFHTML
Abstract

We examine the effect of data augmentation for training of language models for speech recognition. We compare augmentation based on global error statistics with one based on per-word unigram statistics of ASR errors and observe that it is better to only pay attention the global substitution, deletion and insertion rates. This simple scheme also performs consistently better than label smoothing and its sampled variants. Additionally, we investigate into the behavior of perplexity estimated on augmented data, but conclude that it gives no better prediction of the final error rate. Our best augmentation scheme increases the absolute WER improvement from second-pass rescoring from 1.1 % to 1.9 % absolute on the CHiMe-6 challenge.

View on arXiv
Comments on this paper