87

Optimal Private Median Estimation under Minimal Distributional Assumptions

Abstract

We study the fundamental task of estimating the median of an underlying distribution from a finite number of samples, under pure differential privacy constraints. We focus on distributions satisfying the minimal assumption that they have a positive density at a small neighborhood around the median. In particular, the distribution is allowed to output unbounded values and is not required to have finite moments. We compute the exact, up-to-constant terms, statistical rate of estimation for the median by providing nearly-tight upper and lower bounds. Furthermore, we design a polynomial-time differentially private algorithm which provably achieves the optimal performance. At a technical level, our results leverage a Lipschitz Extension Lemma which allows us to design and analyze differentially private algorithms solely on appropriately defined "typical" instances of the samples.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.