ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.06718
42
36
v1v2 (latest)

Power System Event Identification based on Deep Neural Network with Information Loading

13 November 2020
Jie Shi
Brandon Foggo
N. Yu
ArXiv (abs)PDFHTML
Abstract

Online power system event identification and classification is crucial to enhancing the reliability of transmission systems. In this paper, we develop a deep neural network (DNN) based approach to identify and classify power system events by leveraging real-world measurements from hundreds of phasor measurement units (PMUs) and labels from thousands of events. Two innovative designs are embedded into the baseline model built on convolutional neural networks (CNNs) to improve the event classification accuracy. First, we propose a graph signal processing based PMU sorting algorithm to improve the learning efficiency of CNNs. Second, we deploy information loading based regularization to strike the right balance between memorization and generalization for the DNN. Numerical studies results based on real-world dataset from the Eastern Interconnection of the U.S power transmission grid show that the combination of PMU based sorting and the information loading based regularization techniques help the proposed DNN approach achieve highly accurate event identification and classification results.

View on arXiv
Comments on this paper