ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.06775
6
14

DiGNet: Learning Scalable Self-Driving Policies for Generic Traffic Scenarios with Graph Neural Networks

13 November 2020
Peide Cai
Hengli Wang
Yuxiang Sun
Ming-Yu Liu
    GNN
ArXivPDFHTML
Abstract

Traditional decision and planning frameworks for self-driving vehicles (SDVs) scale poorly in new scenarios, thus they require tedious hand-tuning of rules and parameters to maintain acceptable performance in all foreseeable cases. Recently, self-driving methods based on deep learning have shown promising results with better generalization capability but less hand engineering effort. However, most of the previous learning-based methods are trained and evaluated in limited driving scenarios with scattered tasks, such as lane-following, autonomous braking, and conditional driving. In this paper, we propose a graph-based deep network to achieve scalable self-driving that can handle massive traffic scenarios. Specifically, more than 7,000 km of evaluation is conducted in a high-fidelity driving simulator, in which our method can obey the traffic rules and safely navigate the vehicle in a large variety of urban, rural, and highway environments, including unprotected left turns, narrow roads, roundabouts, and pedestrian-rich intersections. Demonstration videos are available at https://caipeide.github.io/dignet/.

View on arXiv
Comments on this paper