ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.07236
6
50

Prototypical Contrast and Reverse Prediction: Unsupervised Skeleton Based Action Recognition

14 November 2020
Shihao Xu
Haocong Rao
Xiping Hu
Bin Hu
    SSL
ArXivPDFHTML
Abstract

In this paper, we focus on unsupervised representation learning for skeleton-based action recognition. Existing approaches usually learn action representations by sequential prediction but they suffer from the inability to fully learn semantic information. To address this limitation, we propose a novel framework named Prototypical Contrast and Reverse Prediction (PCRP), which not only creates reverse sequential prediction to learn low-level information (e.g., body posture at every frame) and high-level pattern (e.g., motion order), but also devises action prototypes to implicitly encode semantic similarity shared among sequences. In general, we regard action prototypes as latent variables and formulate PCRP as an expectation-maximization task. Specifically, PCRP iteratively runs (1) E-step as determining the distribution of prototypes by clustering action encoding from the encoder, and (2) M-step as optimizing the encoder by minimizing the proposed ProtoMAE loss, which helps simultaneously pull the action encoding closer to its assigned prototype and perform reverse prediction task. Extensive experiments on N-UCLA, NTU 60, and NTU 120 dataset present that PCRP outperforms state-of-the-art unsupervised methods and even achieves superior performance over some of supervised methods. Codes are available at https://github.com/Mikexu007/PCRP.

View on arXiv
Comments on this paper