Optimal multiple change-point detection for high-dimensional data

This manuscript makes two contributions to the field of change-point detection. In a generalchange-point setting, we provide a generic algorithm for aggregating local homogeneity testsinto an estimator of change-points in a time series. Interestingly, we establish that the errorrates of the collection of tests directly translate into detection properties of the change-pointestimator. This generic scheme is then applied to various problems including covariance change-point detection, nonparametric change-point detection and sparse multivariate mean change-point detection. For the latter, we derive minimax optimal rates that are adaptive to theunknown sparsity and to the distance between change-points when the noise is Gaussian. Forsub-Gaussian noise, we introduce a variant that is optimal in almost all sparsity regimes.
View on arXiv