54
4
v1v2v3v4v5 (latest)

Matrix compatibility and correlation mixture representation of generalized Gini's gamma

Abstract

Representations of measures of concordance in terms of Pearson' s correlation coefficient are studied. All transforms of random variables are characterized such that the correlation coefficient of the transformed random variables is a measure of concordance. Next, Gini' s gamma is generalized and it is shown that the resulting generalized Gini' s gamma can be represented as a mixture of measures of concordance that are Pearson' s correlation coefficients of transformed random variables. As an application of this correlation mixture representation of generalized Gini' s gamma, lower and upper bounds of the compatible set of generalized Gini' s gamma, which is the collection of all possible square matrices whose entries are pairwise bivariate generalized Gini' s gammas, are derived.

View on arXiv
Comments on this paper