ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.09162
14
8

WPD++: An Improved Neural Beamformer for Simultaneous Speech Separation and Dereverberation

18 November 2020
Zhaoheng Ni
Yong-mei Xu
Meng Yu
Bo Wu
Shi-Xiong Zhang
Dong Yu
Michael I. Mandel
ArXivPDFHTML
Abstract

This paper aims at eliminating the interfering speakers' speech, additive noise, and reverberation from the noisy multi-talker speech mixture that benefits automatic speech recognition (ASR) backend. While the recently proposed Weighted Power minimization Distortionless response (WPD) beamformer can perform separation and dereverberation simultaneously, the noise cancellation component still has the potential to progress. We propose an improved neural WPD beamformer called "WPD++" by an enhanced beamforming module in the conventional WPD and a multi-objective loss function for the joint training. The beamforming module is improved by utilizing the spatio-temporal correlation. A multi-objective loss, including the complex spectra domain scale-invariant signal-to-noise ratio (C-Si-SNR) and the magnitude domain mean square error (Mag-MSE), is properly designed to make multiple constraints on the enhanced speech and the desired power of the dry clean signal. Joint training is conducted to optimize the complex-valued mask estimator and the WPD++ beamformer in an end-to-end way. The results show that the proposed WPD++ outperforms several state-of-the-art beamformers on the enhanced speech quality and word error rate (WER) of ASR.

View on arXiv
Comments on this paper