ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.09631
9
31

Universal MelGAN: A Robust Neural Vocoder for High-Fidelity Waveform Generation in Multiple Domains

19 November 2020
Won Jang
D. Lim
Jaesam Yoon
ArXivPDFHTML
Abstract

We propose Universal MelGAN, a vocoder that synthesizes high-fidelity speech in multiple domains. To preserve sound quality when the MelGAN-based structure is trained with a dataset of hundreds of speakers, we added multi-resolution spectrogram discriminators to sharpen the spectral resolution of the generated waveforms. This enables the model to generate realistic waveforms of multi-speakers, by alleviating the over-smoothing problem in the high frequency band of the large footprint model. Our structure generates signals close to ground-truth data without reducing the inference speed, by discriminating the waveform and spectrogram during training. The model achieved the best mean opinion score (MOS) in most scenarios using ground-truth mel-spectrogram as an input. Especially, it showed superior performance in unseen domains with regard of speaker, emotion, and language. Moreover, in a multi-speaker text-to-speech scenario using mel-spectrogram generated by a transformer model, it synthesized high-fidelity speech of 4.22 MOS. These results, achieved without external domain information, highlight the potential of the proposed model as a universal vocoder.

View on arXiv
Comments on this paper