ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.09654
14
3

HMFlow: Hybrid Matching Optical Flow Network for Small and Fast-Moving Objects

19 November 2020
Suihanjin Yu
Youming Zhang
Chen Wang
Xiao Bai
Liang Zhang
Edwin R. Hancock
ArXivPDFHTML
Abstract

In optical flow estimation task, coarse-to-fine (C2F) warping strategy is widely used to deal with the large displacement problem and provides efficiency and speed. However, limited by the small search range between the first images and warped second images, current coarse-to-fine optical flow networks fail to capture small and fast-moving objects which disappear at coarse resolution levels. To address this problem, we introduce a lightweight but effective Global Matching Component (GMC) to grab global matching features. We propose a new Hybrid Matching Optical Flow Network (HMFlow) by integrating GMC into existing coarse-to-fine networks seamlessly. Besides keeping in high accuracy and small model size, our proposed HMFlow can apply global matching features to guide the network to discover the small and fast-moving objects mismatched by local matching features. We also build a new dataset, named Small and Fast-Moving Chairs (SFChairs), for evaluation. The experimental results show that our proposed network achieves considerable performance, especially at regions with small and fast-moving objects.

View on arXiv
Comments on this paper