ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.10331
15
34

ANIMC: A Soft Framework for Auto-weighted Noisy and Incomplete Multi-view Clustering

20 November 2020
Xiang Fang
Yuchong Hu
Pan Zhou
Dapeng Oliver Wu
ArXivPDFHTML
Abstract

Multi-view clustering has wide applications in many image processing scenarios. In these scenarios, original image data often contain missing instances and noises, which is ignored by most multi-view clustering methods. However, missing instances may make these methods difficult to use directly and noises will lead to unreliable clustering results. In this paper, we propose a novel Auto-weighted Noisy and Incomplete Multi-view Clustering framework (ANIMC) via a soft auto-weighted strategy and a doubly soft regular regression model. Firstly, by designing adaptive semi-regularized nonnegative matrix factorization (adaptive semi-RNMF), the soft auto-weighted strategy assigns a proper weight to each view and adds a soft boundary to balance the influence of noises and incompleteness. Secondly, by proposing{\theta}-norm, the doubly soft regularized regression model adjusts the sparsity of our model by choosing different{\theta}. Compared with existing methods, ANIMC has three unique advantages: 1) it is a soft algorithm to adjust our framework in different scenarios, thereby improving its generalization ability; 2) it automatically learns a proper weight for each view, thereby reducing the influence of noises; 3) it performs doubly soft regularized regression that aligns the same instances in different views, thereby decreasing the impact of missing instances. Extensive experimental results demonstrate its superior advantages over other state-of-the-art methods.

View on arXiv
Comments on this paper