ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.10772
11
32

One Metric to Measure them All: Localisation Recall Precision (LRP) for Evaluating Visual Detection Tasks

21 November 2020
Kemal Oksuz
Baris Can Cam
Sinan Kalkan
Emre Akbas
ArXivPDFHTML
Abstract

Despite being widely used as a performance measure for visual detection tasks, Average Precision (AP) is limited in (i) reflecting localisation quality, (ii) interpretability and (iii) robustness to the design choices regarding its computation, and its applicability to outputs without confidence scores. Panoptic Quality (PQ), a measure proposed for evaluating panoptic segmentation (Kirillov et al., 2019), does not suffer from these limitations but is limited to panoptic segmentation. In this paper, we propose Localisation Recall Precision (LRP) Error as the average matching error of a visual detector computed based on both its localisation and classification qualities for a given confidence score threshold. LRP Error, initially proposed only for object detection by Oksuz et al. (2018), does not suffer from the aforementioned limitations and is applicable to all visual detection tasks. We also introduce Optimal LRP (oLRP) Error as the minimum LRP Error obtained over confidence scores to evaluate visual detectors and obtain optimal thresholds for deployment. We provide a detailed comparative analysis of LRP Error with AP and PQ, and use nearly 100 state-of-the-art visual detectors from seven visual detection tasks (i.e. object detection, keypoint detection, instance segmentation, panoptic segmentation, visual relationship detection, zero-shot detection and generalised zero-shot detection) using ten datasets to empirically show that LRP Error provides richer and more discriminative information than its counterparts. Code available at: https://github.com/kemaloksuz/LRP-Error

View on arXiv
Comments on this paper