ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.11627
16
3

Cycle-consistent Generative Adversarial Networks for Neural Style Transfer using data from ChangÉ-4

23 November 2020
J. D. Curtó
R. Duvall
    GAN
ArXivPDFHTML
Abstract

Generative Adversarial Networks (GANs) have had tremendous applications in Computer Vision. Yet, in the context of space science and planetary exploration the door is open for major advances. We introduce tools to handle planetary data from the mission ChangÉ-4 and present a framework for Neural Style Transfer using Cycle-consistency from rendered images. The experiments are conducted in the context of the Iris Lunar Rover, a nano-rover that will be deployed in lunar terrain in 2021 as the flagship of Carnegie Mellon, being the first unmanned rover of America to be on the Moon.

View on arXiv
Comments on this paper