ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.11891
11
3

Learning Principle of Least Action with Reinforcement Learning

24 November 2020
Zehao Jin
J. Lin
Siao-Fong Li
ArXivPDFHTML
Abstract

Nature provides a way to understand physics with reinforcement learning since nature favors the economical way for an object to propagate. In the case of classical mechanics, nature favors the object to move along the path according to the integral of the Lagrangian, called the action S\mathcal{S}S. We consider setting the reward/penalty as a function of S\mathcal{S}S, so the agent could learn the physical trajectory of particles in various kinds of environments with reinforcement learning. In this work, we verified the idea by using a Q-Learning based algorithm on learning how light propagates in materials with different refraction indices, and show that the agent could recover the minimal-time path equivalent to the solution obtained by Snell's law or Fermat's Principle. We also discuss the similarity of our reinforcement learning approach to the path integral formalism.

View on arXiv
Comments on this paper