116

Unsupervised Domain Adaptation in Semantic Segmentation via Orthogonal and Clustered Embeddings

Abstract

Deep learning frameworks allowed for a remarkable advancement in semantic segmentation, but the data hungry nature of convolutional networks has rapidly raised the demand for adaptation techniques able to transfer learned knowledge from label-abundant domains to unlabeled ones. In this paper we propose an effective Unsupervised Domain Adaptation (UDA) strategy, based on a feature clustering method that captures the different semantic modes of the feature distribution and groups features of the same class into tight and well-separated clusters. Furthermore, we introduce two novel learning objectives to enhance the discriminative clustering performance: an orthogonality loss forces spaced out individual representations to be orthogonal, while a sparsity loss reduces class-wise the number of active feature channels. The joint effect of these modules is to regularize the structure of the feature space. Extensive evaluations in the synthetic-to-real scenario show that we achieve state-of-the-art performance.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.