ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.01281
11
13

Are Gradient-based Saliency Maps Useful in Deep Reinforcement Learning?

2 December 2020
Matthias Rosynski
Frank Kirchner
Matias Valdenegro-Toro
    FAtt
ArXivPDFHTML
Abstract

Deep Reinforcement Learning (DRL) connects the classic Reinforcement Learning algorithms with Deep Neural Networks. A problem in DRL is that CNNs are black-boxes and it is hard to understand the decision-making process of agents. In order to be able to use RL agents in highly dangerous environments for humans and machines, the developer needs a debugging tool to assure that the agent does what is expected. Currently, rewards are primarily used to interpret how well an agent is learning. However, this can lead to deceptive conclusions if the agent receives more rewards by memorizing a policy and not learning to respond to the environment. In this work, it is shown that this problem can be recognized with the help of gradient visualization techniques. This work brings some of the best-known visualization methods from the field of image classification to the area of Deep Reinforcement Learning. Furthermore, two new visualization techniques have been developed, one of which provides particularly good results. It is being proven to what extent the algorithms can be used in the area of Reinforcement learning. Also, the question arises on how well the DRL algorithms can be visualized across different environments with varying visualization techniques.

View on arXiv
Comments on this paper