ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.02009
27
2
v1v2 (latest)

Fundamental Stealthiness-Distortion Tradeoffs in Dynamical Systems under Injection Attacks: A Power Spectral Analysis

3 December 2020
Song Fang
Quanyan Zhu
ArXiv (abs)PDFHTML
Abstract

In this paper, we analyze the fundamental stealthiness-distortion tradeoffs of linear Gaussian dynamical systems under data injection attacks using a power spectral analysis, whereas the Kullback-Leibler (KL) divergence is employed as the stealthiness measure. Particularly, we obtain explicit formulas in terms of power spectra that characterize analytically the stealthiness-distortion tradeoffs as well as the properties of the worst-case attacks. Furthermore, it is seen in general that the attacker only needs to know the input-output behaviors of the systems in order to carry out the worst-case attacks.

View on arXiv
Comments on this paper