This paper studies the vehicle platooning system based on vehicle-to-infrastructure (V2I) communication, where all the vehicles in the platoon upload their driving state information to the roadside unit (RSU), and RSU makes the platoon control decisions with the assistance of edge computing. By addressing the delay concern, a platoon control approach is proposed to achieve plant stability and string stability. The effects of the time headway, communication and edge computing delays on the stability are quantified. The velocity and size of the stable platoon are calculated, which show the impacts of the radio parameters such as massive MIMO antennas and frequency band on the platoon configuration. The handover performance between RSUs in the V2I-based platooning system is quantified by considering the effects of the RSU's coverage and platoon size, which demonstrates that the velocity of a stable platoon should be appropriately chosen, in order to meet the V2I's Quality-of-Service and handover constraints.
View on arXiv