ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.03617
9
1

Motor Imagery Classification Emphasizing Corresponding Frequency Domain Method based on Deep Learning Framework

7 December 2020
Byoung-Hee Kwon
Byeong-Hoo Lee
Ji-Hoon Jeong
ArXivPDFHTML
Abstract

The electroencephalogram, a type of non-invasive-based brain signal that has a user intention-related feature provides an efficient bidirectional pathway between user and computer. In this work, we proposed a deep learning framework based on corresponding frequency empahsize method to decode the motor imagery (MI) data from 2020 International BCI competition dataset. The MI dataset consists of 3-class, namely 'Cylindrical', 'Spherical', and 'Lumbrical'. We utilized power spectral density as an emphasize method and a convolutional neural network to classify the modified MI data. The results showed that MI-related frequency range was activated during MI task, and provide neurophysiological evidence to design the proposed method. When using the proposed method, the average classification performance in intra-session condition was 69.68% and the average classification performance in inter-session condition was 52.76%. Our results provided the possibility of developing a BCI-based device control system for practical applications.

View on arXiv
Comments on this paper