ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.03623
118
19

Noise2Kernel: Adaptive Self-Supervised Blind Denoising using a Dilated Convolutional Kernel Architecture

7 December 2020
Kanggeun Lee
Won-Ki Jeong
ArXiv (abs)PDFHTML
Abstract

With the advent of recent advances in unsupervised learning, efficient training of a deep network for image denoising without pairs of noisy and clean images has become feasible. However, most current unsupervised denoising methods are built on the assumption of zero-mean noise under the signal-independent condition. This assumption causes blind denoising techniques to suffer brightness shifting problems on images that are greatly corrupted by extreme noise such as salt-and-pepper noise. Moreover, most blind denoising methods require a random masking scheme for training to ensure the invariance of the denoising process. In this paper, we propose a dilated convolutional network that satisfies an invariant property, allowing efficient kernel-based training without random masking. We also propose an adaptive self-supervision loss to circumvent the requirement of zero-mean constraint, which is specifically effective in removing salt-and-pepper or hybrid noise where a prior knowledge of noise statistics is not readily available. We demonstrate the efficacy of the proposed method by comparing it with state-of-the-art denoising methods using various examples.

View on arXiv
Comments on this paper