ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.03632
23
5

Speech Imagery Classification using Length-Wise Training based on Deep Learning

7 December 2020
Byeong-Hoo Lee
Byoung-Hee Kwon
Do-Yeun Lee
Ji-Hoon Jeong
    VLM
ArXiv (abs)PDFHTML
Abstract

Brain-computer interface uses brain signals to control external devices without actual control behavior. Recently, speech imagery has been studied for direct communication using language. Speech imagery uses brain signals generated when the user imagines speech. Unlike motor imagery, speech imagery still has unknown characteristics. Additionally, electroencephalography has intricate and non-stationary properties resulting in insufficient decoding performance. In addition, speech imagery is difficult to utilize spatial features. In this study, we designed length-wise training that allows the model to classify a series of a small number of words. In addition, we proposed hierarchical convolutional neural network structure and loss function to maximize the training strategy. The proposed method showed competitive performance in speech imagery classification. Hence, we demonstrated that the length of the word is a clue at improving classification performance.

View on arXiv
Comments on this paper