With diverse IoT workloads, placing compute and analytics close to where data
is collected is becoming increasingly important. We seek to understand what is
the performance and the cost implication of running analytics on IoT data at
the various available platforms. These workloads can be compute-light, such as
outlier detection on sensor data, or compute-intensive, such as object
detection from video feeds obtained from drones. In our paper, JANUS, we
profile the performance/andthecomputeversuscommunicationcostforacompute−lightIoTworkloadandacompute−intensiveIoTworkload.Inaddition,wealsolookattheprosandconsofsomeoftheproprietarydeep−learningobjectdetectionpackages,suchasAmazonRekognition,GoogleVision,andAzureCognitiveServices,tocontrastwithopen−sourceandtunablesolutions,suchasFasterR−CNN(FRCNN).WefindthatAWSIoTGreengrassdeliversatleast2Xlowerlatencyand1.25Xlowercostcomparedtoallothercloudplatformsforthecompute−lightoutlierdetectionworkload.Forthecompute−intensivestreamingvideoanalyticstask,anopensourcesolutiontoobjectdetectionrunningoncloudVMssavesondollarcostscomparedtoproprietarysolutionsprovidedbyAmazon,Microsoft,andGoogle,butlosesoutonlatency(upto6X).Ifitrunsonalow−powerededgedevice,thelatencyisupto49Xlower.