ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.06780
11
86

GDPNet: Refining Latent Multi-View Graph for Relation Extraction

12 December 2020
Fuzhao Xue
Aixin Sun
Hao Zhang
E. Chng
ArXivPDFHTML
Abstract

Relation Extraction (RE) is to predict the relation type of two entities that are mentioned in a piece of text, e.g., a sentence or a dialogue. When the given text is long, it is challenging to identify indicative words for the relation prediction. Recent advances on RE task are from BERT-based sequence modeling and graph-based modeling of relationships among the tokens in the sequence. In this paper, we propose to construct a latent multi-view graph to capture various possible relationships among tokens. We then refine this graph to select important words for relation prediction. Finally, the representation of the refined graph and the BERT-based sequence representation are concatenated for relation extraction. Specifically, in our proposed GDPNet (Gaussian Dynamic Time Warping Pooling Net), we utilize Gaussian Graph Generator (GGG) to generate edges of the multi-view graph. The graph is then refined by Dynamic Time Warping Pooling (DTWPool). On DialogRE and TACRED, we show that GDPNet achieves the best performance on dialogue-level RE, and comparable performance with the state-of-the-arts on sentence-level RE.

View on arXiv
Comments on this paper