ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.07462
11
3

Learned Video Codec with Enriched Reconstruction for CLIC P-frame Coding

14 December 2020
David Alexandre
Hsueh-Ming Hang
ArXivPDFHTML
Abstract

This paper proposes a learning-based video codec, specifically used for Challenge on Learned Image Compression (CLIC, CVPRWorkshop) 2020 P-frame coding. More specifically, we designed a compressor network with Refine-Net for coding residual signals and motion vectors. Also, for motion estimation, we introduced a hierarchical, attention-based ME-Net. To verify our design, we conducted an extensive ablation study on our modules and different input formats. Our video codec demonstrates its performance by using the perfect reference frame at the decoder side specified by the CLIC P-frame Challenge. The experimental result shows that our proposed codec is very competitive with the Challenge top performers in terms of quality metrics.

View on arXiv
Comments on this paper