ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.08063
18
30

A New Many-Objective Evolutionary Algorithm Based on Determinantal Point Processes

15 December 2020
Peng Zhang
Jinlong Li
Tengfei Li
Huanhuan Chen
ArXivPDFHTML
Abstract

To handle different types of Many-Objective Optimization Problems (MaOPs), Many-Objective Evolutionary Algorithms (MaOEAs) need to simultaneously maintain convergence and population diversity in the high-dimensional objective space. In order to balance the relationship between diversity and convergence, we introduce a Kernel Matrix and probability model called Determinantal Point Processes (DPPs). Our Many-Objective Evolutionary Algorithm with Determinantal Point Processes (MaOEADPPs) is presented and compared with several state-of-the-art algorithms on various types of MaOPs \textcolor{blue}{with different numbers of objectives}. The experimental results demonstrate that MaOEADPPs is competitive.

View on arXiv
Comments on this paper