ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.08101
11
21

Detecting and Adapting to Irregular Distribution Shifts in Bayesian Online Learning

15 December 2020
Aodong Li
Alex Boyd
Padhraic Smyth
Stephan Mandt
ArXivPDFHTML
Abstract

We consider the problem of online learning in the presence of distribution shifts that occur at an unknown rate and of unknown intensity. We derive a new Bayesian online inference approach to simultaneously infer these distribution shifts and adapt the model to the detected changes by integrating ideas from change point detection, switching dynamical systems, and Bayesian online learning. Using a binary 'change variable,' we construct an informative prior such that--if a change is detected--the model partially erases the information of past model updates by tempering to facilitate adaptation to the new data distribution. Furthermore, the approach uses beam search to track multiple change-point hypotheses and selects the most probable one in hindsight. Our proposed method is model-agnostic, applicable in both supervised and unsupervised learning settings, suitable for an environment of concept drifts or covariate drifts, and yields improvements over state-of-the-art Bayesian online learning approaches.

View on arXiv
Comments on this paper