Network error. Please check your internet connection.
Network error. Please check your internet connection.
Network error. Please check your internet connection.
Network error. Please check your internet connection.
164
v1v2v3v4 (latest)

TrojanZoo: Towards Unified, Holistic, and Practical Evaluation of Neural Backdoors

European Symposium on Security and Privacy (EuroS&P), 2025
Abstract

Neural backdoors represent one primary threat to the security of deep learning systems. The intensive research has produced a plethora of backdoor attacks/defenses, resulting in a constant arms race. However, due to the lack of evaluation benchmarks, many critical questions remain under-explored: (i) what are the strengths and limitations of different attacks/defenses? (ii) what are the best practices to operate them? and (iii) how can the existing attacks/defenses be further improved? To bridge this gap, we design and implement TROJANZOO, the first open-source platform for evaluating neural backdoor attacks/defenses in a unified, holistic, and practical manner. Thus far, focusing on the computer vision domain, it has incorporated 8 representative attacks, 14 state-of-the-art defenses, 6 attack performance metrics, 10 defense utility metrics, as well as rich tools for in-depth analysis of the attack-defense interactions. Leveraging TROJANZOO, we conduct a systematic study on the existing attacks/defenses, unveiling their complex design spectrum: both manifest intricate trade-offs among multiple desiderata (e.g., the effectiveness, evasiveness, and transferability of attacks). We further explore improving the existing attacks/defenses, leading to a number of interesting findings: (i) one-pixel triggers often suffice; (ii) training from scratch often outperforms perturbing benign models to craft trojan models; (iii) optimizing triggers and trojan models jointly greatly improves both attack effectiveness and evasiveness; (iv) individual defenses can often be evaded by adaptive attacks; and (v) exploiting model interpretability significantly improves defense robustness. We envision that TROJANZOO will serve as a valuable platform to facilitate future research on neural backdoors.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.