91

LIGHTEN: Learning Interactions with Graph and Hierarchical TEmporal Networks for HOI in videos

Abstract

Analyzing the interactions between humans and objects from a video includes identification of the relationships between humans and the objects present in the video. It can be thought of as a specialized version of Visual Relationship Detection, wherein one of the objects must be a human. While traditional methods formulate the problem as inference on a sequence of video segments, we present a hierarchical approach, LIGHTEN, to learn visual features to effectively capture spatio-temporal cues at multiple granularities in a video. Unlike current approaches, LIGHTEN avoids using ground truth data like depth maps or 3D human pose, thus increasing generalization across non-RGBD datasets as well. Furthermore, we achieve the same using only the visual features, instead of the commonly used hand-crafted spatial features. We achieve state-of-the-art results in human-object interaction detection (88.9% and 92.6%) and anticipation tasks of CAD-120 and competitive results on image based HOI detection in V-COCO dataset, setting a new benchmark for visual features based approaches. Code for LIGHTEN is available at https://github.com/praneeth11009/LIGHTEN-Learning-Interactions-with-Graphs-and-Hierarchical-TEmporal-Networks-for-HOI

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.